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Reaction-diffusion systems with mass conservation are studied. In such systems, abrupt decays of stripes
follow quasistationary states in sequence generally. We give a stability condition of steady state which the
system reaches after long transient time. It is also shown that there exist systems in which a single-stripe
pattern is solely steady state for an arbitrary size of the systems. The applicability to cell biology is discussed.
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Pattern formation, the emergence of a spatial structure
from an initially uniform state, has often been studied on the
framework of reaction-diffusion systems �RDS�. It is exten-
sively applied to physical, chemical, and biological systems
to explain their specific spatial structures �1,2�. Turing insta-
bility is the most prominent mechanism, forming spatially
periodic stripes �3�. The intrinsic distance between stripes is,
in principle, estimated by the linear stability analysis at a
homogeneous state �1–3�. However, this estimation could be
invalid when applied far from a uniform state. For example,
a second bifurcation can arise which would indicate the col-
lapse of a simple periodic structure �4�. In such situations,
the transient dynamics of pattern formation would be diffi-
cult to predict. In general, RDS shows various dynamics
even when steady states are reached �5�. So far, a few studies
have discussed transient dynamics using the computational
analysis of the famous Gray-Scott model �5,6� and by re-
duced dynamics on the slow manifold �7–9�.

In this paper, we study a class of RDS in the context of
the above aspects. We consider RDS showing instability at
uniform state, in which no production and no degradation of
substances occur �10,11�. Such situations often arise in the
biological models, particularly at the scale of cells �see later
discussion� �12,13�. As we will see, the following properties
are commonly observed in such RDS; �i� the transient dy-
namics is a sequential transition among quasisteady states,
with a decrease in the number of stripes. �ii� The distance
between resultant stripes cannot be estimated from the linear
analysis at uniform state. In particular, there are systems in
which a one-stripe pattern is a solely stable state regardless
of the system size.

Consider a diffusible chemical component with two inter-
nal states, U and V. Diffusion coefficients are Du and Dv,
respectively, for which we can set Du�Dv without loss of
generality. The transition rates between U and V are regu-
lated by each other. We studied a one-dimensional system
with size L�0�x�L� under periodic boundary conditions
unless otherwise stated. Concentrations in U and V at posi-
tion x and at time t are represented by u�x , t� and v�x , t�,
respectively, and obey the following equations:

�tu = Du�x
2u − f�u,v� , �1�

�tv = Dv�x
2v + f�u,v� . �2�

Obviously, the total quantity of the substances �total mass� is
conserved,

s =
1

L
�

0

L

�u + v�dx , �3�

s is the average concentration of the substance, which is
determined by the initial condition u�x ,0� and v�x ,0�.

Below, all numerical simulations were performed with
f�u ,v�=au / �b+u2�−v where s=2.0, a=1.0, b=0.1,
Du=0.02, and Dv=1.0. We observed qualitatively the same
phenomena in several mass-conserved models �13�.

Uniform state w� *= �u* ,v*� is derived from the following
conditions; u*+v*=s and f�u* ,v*�=0 �stable fixed point in
kinetic equation�. Let fu

* �fv
*� be partial derivatives of f with

regard to u �v� at w� *. If the following relations are satisfied,
uniform state w� * loses its stability in Turing-like manner
�19�, and the pattern starts to rise,

fv
* � fu

* � 0, �4�

Dufv
* − Dvfu

* � 0. �5�

All the waves �eikx� with wave number k between
0�k2� �Dufv

* −Dvfu
*� /DuDv are unstable.

At the beginning of the dynamics, the wave with the larg-
est instability grows �see A in Fig. 1, and the line segment
representing the most unstable wavelength �m�. In a mass-
conserved system, characteristic transient processes are ob-
served. After the growth of a number of stripes �A in Fig. 1�,
some stripes stop growing and begin to decay �B�. With the
decay of a stripe, neighboring stripes grow due to mass con-
servation. The distance between neighboring stripes becomes
larger �B–C�. If the distance is large enough the state ap-
pears to reach a steady state �C, quasisteady state�. However,
one �or more� stripe�s� collapses abruptly with the concomi-
tant growth of adjacent stripes �D�. As the process continues,
the number of stripes decreases and the intervals between the
abrupt transitions gets longer �notice the log-scale represen-
tation in Fig. 1�. In Fig. 1, the system finally reaches a one-
peak state. The wavelength is much larger than �m. Similar
processes were observed in many mass-conserved systems.

To understand the observed transient processes, consider
the stationary patterns of the system with size L. A stationary*Electronic address: ishihara@nibb.ac.jp
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pattern w� 0�x�= �u0�x� ,v0�x�� is given by the solution of Eq.
�1� and �2� with left-hand sides replaced by 0. In a mass-
conserved system, there is a family of stationary solutions
parametrized by s, represented by w� 0�x ;s� explicitly. A func-
tion h�x� and a value P exist, such that u0=h�x� /Du and
v0�x�= �−h�x�+ P� /Dv, and satisfy the following equations:

P = Duu0�x� + Dvv0�x� , �6�

d2h�x�
dx2 = f� h

Du
,
− h + P

Dv
� . �7�

Notice Duu0�x�+Dvv0�x� is independent of x. P is related to

s by P=Dvs− �Dv−Du�h̄ /Du, in which h̄= 1
L�0

Lh�x�dx is the
average of h�x�.

Let us represent the linear operator at a stationary state w� 0
by L. There are two eigenfunctions belonging to the zero
eigenvalue �0-eigenfunctions�; �xw� 0= ��xu0 ,�xv0� and
�sw� 0= ��su0 ,�sv0�. The former function is derived from the
fact that the arbitrary translation of stationary state,
w� 0�x+�� is also stationary, while the latter is from the con-
servation property of the mass. Adopting usual L2-inner
product, �� = �1,1� is the conjugate vector of �sw� 0 because

	�� ,�sw� 0
L=1 and 	�� ,�xw� 0
L=0.
Now, to evaluate the stability of a stationary pattern, con-

sider the two peak situation. Take the one-stripe stationary
state w� 0 in the system with L

2 length, which takes the mini-
mum u0 at x=0�= L

2
� and the maximum at x= L

4 . Then copy the
exact same state on L

2 �x�L, and name the system on
0�x�L as the unperturbed system �UPS�. Left and right
halves are independent of each other. Next, the boundary
condition in UPS is changed at x=0�= L

2
� and L

2 �=L� into the
usual periodic boundary condition of the system on
0�x�L. We refer to this modified system, which is the one
we are interested in, as the perturbed system �PS�. We rep-
resent the state constructed as above by w� 0 � w� 0, where the
left- �right-� hand side of � represents the function on

0�x�
L
2

� L
2 �x�L�. This state is obviously a stationary so-

lution in both UPS and PS.
Linear operators at the state are given by L0 for UPS and

L for PS. Because UPS is simply the juxtaposition of iden-

tical systems, �� 1
0=�xw� 0 � �xw� 0 and �� 2

0=�sw� 0 � �sw� 0 are
0-eigenfunctions for L0. They are also 0-eigenfunctions in

PS; L0�� i
0=L�� i

0=0 �i=1,2�. Another 0-eigenfunction of L0

is �� 3
0=�sw� 0 � �−�sw� 0� but this is not 0-eigenfunctions of L

anymore �20�. However, when the amplitudes of ��su0� and
��sv0� are small at x=0 and L

2 , the discrepancy between UPS

and PS is small and we can expect a function �� = ��u ,�v� and

a value � which are close to �� 3
0and 0, respectively, and that

they satisfy the following relation:

L�� = ��� . �8�

If � is positive, then the stationary state w� 0 � w� 0 is unstable

and small fluctuations grow as �e�t�� . Because �� is similar

to �� 3
0=�sw� 0 � �−�sw� 0�, the corresponding dynamics appears

as the decay of a stripe and the growth of the other, as is
observed in the numerical simulations. Note the conjugate

function of �� 3
0 is �� L=�� � �−�� �.

FIG. 1. Transient dynamics of a mass-conserved system. The
model system and the meaning of alphabet letters are explained in
the text. System size was chosen as L=50.0 here. Note that
time scale is represented by log scale. In the system, the most
unstable wavelength at homogeneous state is �m=3.2, shown by the
line segment in the left bottom. We checked that the system even-
tually falls to a one-stripe pattern for any system size between
2.0�L�100.0.

FIG. 2. Two identical steady solutions for L
2 =10.0 are connected

and perturbed �±1.0%, keeping total mass quantity� at t=0. �a� �	s�
grows exponentially with time, indicating that one stripe decays
while the other grows. u�x , t� �solidline� and v�x , t� �dashedline� at
t=0, 2500, 3000, and 3500 are shown in insets. �b� 	w� �x�, the
difference of w� �x , t� between t=200 and 300 is shown in the top
panel, while �sw� 0 is shown in the bottom panel �normalization is
applied�.
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To check the validity of the above considerations, we nu-
merically measured some related quantities. At first, we
simulated the equations in the L

2 -length system and obtained
a steady one-stripe state. Then, we extended the system size
twice and copied the steady state to the region L

2 �x�L.
Next, perturbations were added keeping the total mass con-
served and observed the resulting dynamics. �	s�t� �

�	�� L ,w� 
L � = 1

L � �0
L/2�u+v�dx−�L/2

L �u+v�dx� is plotted in Fig.
2�a� which shows the exponential growth of the perturbation.

Then, we compared �� 3
0 with the growing part of �u ,v�. In

Fig. 2�b�, 	w� �x�= �	u�x� ,	v�x�� is shown, where 	w� �x�
=w� �x , t2�−w� �x , t1� is the difference of w� between two grow-

ing time points t1 and t2. 	w� �x� is similar to �� 3
0 which vali-

dates the above considerations.

The expected �� is a continuous and smooth function on
0�x�L and odd around x= L

2 . Thus, it is enough to consider
a nontrivial solution of Eq. �8� on 0�x�

L
2 with boundary

condition �� �0�=�� � L
2

�=0. We can limit our arguments
on 0�x�

L
2 in the following discussion. We properly rede-

fine L under this limitation. To obtain �� and � in Eq. �8�,
�� =�sw� 0+
� is defined, where 
� is orthogonal to �sw� 0

�	�� ,
� 
L/2=0�. In the first order of approximation, 
� satisfies
the relation L
� =��sw� 0. Then we can obtain

� = �Dv − Du

DuDv
Ā +

1

Dv
Q̂
¯ �−1

, �9�

where Ā= 1
L/2�0

L/2A�x�dx and Q̂
¯

= 1
L/2�0

L/2Q̂�x�dx. Here Q̂�x� is

defined as Q�x�
Du�u�x�+Dv�v�x�=�Q̂�x�, and is explic-
itly given by

Q̂�x� = �
0

x

dx��
0

x�
dx���su0�x�� + �sv0�x��� −

L

4
x , �10�

and A�x� is the solution of the following equation:

d2A

dx2 − � fu

Du
−

fv

Dv
�A =

fv

Dv
Q̂�x� + �su0 �11�

with the boundary condition A�0�=A� L
2

�=0.
We calculated Eq. �9� numerically. Observed growth rates

and estimated values from Eq. �9� are plotted in Fig. 3�a�
against one-half of the system size L

2 , which is the distance
between two stripes. The two plots are in good agreement
with each other and support the validity of the arguments
presented.

From Q�x�=�Q̂�x�, we can obtain �=− 4
L

dQ�0�

dx . In UPS,
Q�x� is given by �sP � �−�sP� and independent of x, while in
PS Q�x� is connected with 0 at x=0 and = L

2 by the modifi-

cation of boundary conditions. Thus, the sign of
dQ�0�

dx is the
same as �sP and the sign of � is the opposite of �sP. This
leads to the condition of two stripe instability in the L-length
system as

�sP � 0. �12�

This instability condition is true for any stationary state as
seen below, and thus gives the criterion of the final state of
mass-conserved RDS.

The above arguments with the two-stripes situation are
extensible to an identical N-stripe pattern, where each stripe
has L

N width. Consider a set of independent functions

�� 0
�= � j=1

N ei�2
/N��j�sw� 0 ��=1,2 , . . . ,N�, where � j=1
N is de-

fined similarly to � and w� 0 is redefined by the one-stripe
solution of L

N width. Then eigenfunctions of L �redefined for

the N-stripe solution�, �� �, are close to �� 0
�. Smooth connec-

FIG. 3. �a� Growth rates � for
respective system sizes are evalu-
ated from the observations of
�	s�t�� ��� and from Eq. �9� ���.
Approximated estimation of �,
− 4

L2 �sP, are also plotted �+�. �b�
Eigenvalues of L for the eight-
stripe state are numerically calcu-
lated �L=80.0�, and �c� corre-
sponding eigenfunctions. Note
that eigenvalues except �=4,8 are
degenerated. Sinusoidal curves are
also shown for guidance.
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tion of �� � at each boundary x= L
N j is conditioned. Consider-

ation of Q�x�
Du�u
�+Dv�v

�, which is close to
� j=1

N ei�2
/N��j�sP, gives a rough estimation of the eigenvalues
as ���−4� N

L
�2�sP sin2� 
�

N
�. This indicates that a shorter wave

�i.e., closer � to N
2 � has larger instability if �sP�0. �N/2 for

even N is identical to that estimated from two stripes. Ap-
proximated values are shown in Fig. 3. The approximated �1

for N=2 is plotted in �a�. Eigenvalues and corresponding
eigenfunctions for N=8,L=80.0 are shown in �b� and �c�.

To consider transient processes, an illustrative example
can be seen from the stationary state of 2N stripes with a
small perturbation. If Eq. �12� is satisfied for w� 0, the most
unstable function is �N. By the growth of the perturbation
along this function, the system reaches N-stripe pattern at
last. If this new state becomes unstable, a similar process
follows until the system reaches a steady state. In the �un-
stable� stationary state where the dynamics become close in
their transient, � is small if the distance between adjacent
stripes is large. The corresponding state lasts for the duration
of approximately �−1 and therefore each state appears qua-
sistationary. Because the distance becomes 2 times as large
after each transient, the staying time in the quasistationary
state also gets longer. We could numerically observe these
processes from the eight-stripe initial condition. This demon-
strates the underlying processes of the characteristic tran-
sients inherent to mass-conserved systems.

After the long transient, the system reaches the steady
state at which the condition Eq. �12� is violated. Notice that
Eq. �5�, the condition for instability of uniform state, implies
Eq. �12� is always satisfied in the early stages of transient,
where w� �x� ranges in the neighborhood of w� *. Therefore, the
characteristic wavelength of the steady state is always longer
than that expected by linear stability analysis at a uniform
state in a mass-conserved system. Our numerical model
showed a one-stripe solution eventually between 2.0�L
�100.0, while �m=3.2.

One interesting question that arises is the possibility of
the system in which the condition in Eq. �12� is always valid
in the transient quasisteady states except in sole stripe solu-
tions. Such systems fall into a one-stripe solution after a long

transient regardless of system size. An example of such sys-
tem was supplied by our group in Ref. �13�, defined by
f�u ,v�=−��u+v����u+v��u+v�−�� where �=Du /Dv. In
this specific model, if L is large enough, P is well approxi-

mated by P=
3Dv�

L�
1
s with �
 1

2
�Dv−Du

DvDu
��. Thus a one-stripe

pattern is the only stable state in the system. Though rigorous
conditions are not described here, many mass-conserved sys-
tems have such properties.

In this letter, we study RDS in which the uniform state is
destabilized via a Turing-like mechanism and mass �u+v� is
conserved. The stability of states in such systems is derived
from the condition Eq. �12�. The analysis presented is useful
for stationary patterns in any RDS and the conserved quan-
tity does not have to be strictly defined by mass. Because the
existence of any conserved quantity brings the corresponding
0-eigenfunction, our arguments are applicable. Thus, the dy-
namics studied here may be observed in a wider class of
RDS with conserved quantities �12,14�.

We did not mention the hierarchical structure of quasista-
tionary states in the phase space, which is a necessary con-
dition for the sequential transient, as discussed in Ref. �5�. It
is a global property of the phase space of the systems and
difficult to study. Numerical simulations suggest it is satis-
fied in mass-conserved systems.

Applications of this work are possible to many phenom-
ena, particularly to biological systems. Proposed biological
models often contain conserved quantities �12,15,16�. At the
cellular level ��10 �m�, cytosolic proteins diffuse at
�10 �m2/s �17� leading to the rough estimation of the time
scale of dynamics as �−1���sP /L2�−1�L2 /Dv�10 s. Typi-
cally, it is faster than the synthesis or degradation of mol-
ecules and the dynamics is expected to occur within the time
scale in which mass-conserved modeling is valid. The for-
mation of cell polarity based on the above discussions is a
potential application �12,13,18�.
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