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Transient and steady state of mass-conserved reaction-diffusion systems
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Reaction-diffusion systems with mass conservation are studied. In such systems, abrupt decays of stripes
follow quasistationary states in sequence generally. We give a stability condition of steady state which the
system reaches after long transient time. It is also shown that there exist systems in which a single-stripe
pattern is solely steady state for an arbitrary size of the systems. The applicability to cell biology is discussed.

DOI: 10.1103/PhysRevE.75.015203

Pattern formation, the emergence of a spatial structure
from an initially uniform state, has often been studied on the
framework of reaction-diffusion systems (RDS). It is exten-
sively applied to physical, chemical, and biological systems
to explain their specific spatial structures [1,2]. Turing insta-
bility is the most prominent mechanism, forming spatially
periodic stripes [3]. The intrinsic distance between stripes is,
in principle, estimated by the linear stability analysis at a
homogeneous state [ 1-3]. However, this estimation could be
invalid when applied far from a uniform state. For example,
a second bifurcation can arise which would indicate the col-
lapse of a simple periodic structure [4]. In such situations,
the transient dynamics of pattern formation would be diffi-
cult to predict. In general, RDS shows various dynamics
even when steady states are reached [5]. So far, a few studies
have discussed transient dynamics using the computational
analysis of the famous Gray-Scott model [5,6] and by re-
duced dynamics on the slow manifold [7-9].

In this paper, we study a class of RDS in the context of
the above aspects. We consider RDS showing instability at
uniform state, in which no production and no degradation of
substances occur [10,11]. Such situations often arise in the
biological models, particularly at the scale of cells (see later
discussion) [12,13]. As we will see, the following properties
are commonly observed in such RDS; (i) the transient dy-
namics is a sequential transition among quasisteady states,
with a decrease in the number of stripes. (ii) The distance
between resultant stripes cannot be estimated from the linear
analysis at uniform state. In particular, there are systems in
which a one-stripe pattern is a solely stable state regardless
of the system size.

Consider a diffusible chemical component with two inter-
nal states, U and V. Diffusion coefficients are D, and D,,
respectively, for which we can set D, <D, without loss of
generality. The transition rates between U and V are regu-
lated by each other. We studied a one-dimensional system
with size L(0=x=L) under periodic boundary conditions
unless otherwise stated. Concentrations in U and V at posi-
tion x and at time 7 are represented by u(x,7) and v(x,1),
respectively, and obey the following equations:

O = D, u — f(u,v), (1)
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v = DU&)ZCU + f(u,v). (2)

Obviously, the total quantity of the substances (total mass) is
conserved,

1t
S:ZJO (u+v)dx, (3)

s is the average concentration of the substance, which is
determined by the initial condition u(x,0) and v(x,0).

Below, all numerical simulations were performed with
fu,v)=aul/(b+u*)—v where s=2.0, a=1.0, b=0.1,
D,=0.02, and D,=1.0. We observed qualitatively the same
phenomena in several mass-conserved models [13].

Uniform state w =(u",v") is derived from the following
conditions; u”+v"=s and f(u",v")=0 (stable fixed point in
kinetic equation). Let f; (f:) be partial derivatives of f with
regard to u (v) at w”. If the following relations are satisfied,
uniform state w" loses its stability in Turing-like manner
[19], and the pattern starts to rise,

fo<fu<0, (4)

D,f,-D,f,>0. (5)

All the waves (¢™) with wave number k between
0<k>*<(D,f,-D,f.)/D,D, are unstable.

At the beginning of the dynamics, the wave with the larg-
est instability grows (see A in Fig. 1, and the line segment
representing the most unstable wavelength €,,). In a mass-
conserved system, characteristic transient processes are ob-
served. After the growth of a number of stripes (A in Fig. 1),
some stripes stop growing and begin to decay (B). With the
decay of a stripe, neighboring stripes grow due to mass con-
servation. The distance between neighboring stripes becomes
larger (B—C). If the distance is large enough the state ap-
pears to reach a steady state (C, quasisteady state). However,
one (or more) stripe(s) collapses abruptly with the concomi-
tant growth of adjacent stripes (D). As the process continues,
the number of stripes decreases and the intervals between the
abrupt transitions gets longer (notice the log-scale represen-
tation in Fig. 1). In Fig. 1, the system finally reaches a one-
peak state. The wavelength is much larger than €,,. Similar
processes were observed in many mass-conserved systems.

To understand the observed transient processes, consider
the stationary patterns of the system with size L. A stationary
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FIG. 1. Transient dynamics of a mass-conserved system. The
model system and the meaning of alphabet letters are explained in
the text. System size was chosen as L=50.0 here. Note that
time scale is represented by log scale. In the system, the most
unstable wavelength at homogeneous state is €,,=3.2, shown by the
line segment in the left bottom. We checked that the system even-
tually falls to a one-stripe pattern for any system size between
2.0=L=100.0.

pattern w(x)=(uy(x),v,(x)) is given by the solution of Eq.
(1) and (2) with left-hand sides replaced by 0. In a mass-
conserved system, there is a family of stationary solutions
parametrized by s, represented by wy(x;s) explicitly. A func-
tion h(x) and a value P exist, such that ug=h(x)/D, and
vo(x)=[-h(x)+P]/D,, and satisfy the following equations:

P =D,uy(x) + D,vy(x), (6)
d’h(x) (i —h+P>
a* ‘\p, D, )’ @)

u v

Notice D,uy(x)+D,vy(x) is independent of x. P is related to
s by P=D,s—(D,~D,)h/D,, in which h=1 [5h(x)dx is the
average of h(x).

Let us represent the linear operator at a stationary state wy,
by L. There are two eigenfunctions belonging to the zero
eigenvalue  (0-eigenfunctions);  dwy=(dug,dv,) and
dwo=(duy,d0,). The former function is derived from the
fact that the arbitrary translation of stationary state,
wo(x+A) is also stationary, while the latter is from the con-
servation property of the mass. Adopting usual L’-inner

product, gZ:(l,l) is the conjugate vector of dw, because
(¢, 0,wo) =1 and (¢, d,wp), =0

Now, to evaluate the stability of a stationary pattern, con-
sider the two peak situation Take the one-stripe stationary
state W, in the system with £ 5 length, which takes the mini-
mum ug at x= 0(= ) and the max1mum at x= 7. Then copy the
exact same state on 2<x<L and name the system on
0=x=L as the unperturbed system (UPS). Left and right
halves are independent of each other. Next, the boundary
condition in UPS is changed at x:0(=%) and %(:L) into the
usual periodic boundary condition of the system on
0=x=L. We refer to this modified system, which is the one
we are interested in, as the perturbed system (PS). We rep-
resent the state constructed as above by w,®w,, where the
left- (right-) hand side of @ represents the function on
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FIG. 2. Two identical steady solutions for %: 10.0 are connected
and perturbed (+1.0%, keeping total mass quantity) at r=0. (a) |As]|
grows exponentially with time, indicating that one stripe decays
while the other grows. u(x,) (solidline) and v(x,) (dashedline) at
t=0, 2500, 3000, and 3500 are shown in insets. (b) Aw(x), the
difference of w(x,?) between =200 and 300 is shown in the top
panel, while d,w, is shown in the bottom panel (normalization is

applied).

O<x<§ (% <x<L). This state is obviously a stationary so-
lution in both UPS and PS.

Linear operators at the state are given by £, for UPS and
L for PS. Because UPS is simply the Juxtaposmon of iden-

tical systems, 1//1 I Wo® dw, and ¢r2—& WoD dw, are
0-eigenfunctions for L,. They are also 0-eigenfunctions in

PS; /JOzZ?=£¢Z/?=O (i=1,2). Another 0-eigenfunction of L,
is zjfg:dﬁ()@(—dﬁo) but this is not 0-eigenfunctions of £
anymore [20]. However, when the amplitudes of |dug| and
|,vo| are small at x=0 and 5, the discrepancy between UPS

and PS is small and we can expect a function zZ=(¢u, ,) and

a value N which are close to Jfgand 0, respectively, and that
they satisfy the following relation:

L=\ (8)

If N\ is positive, then the stationary state WOEBWO is unstable
and small fluctuations grow as ~e}"<ﬁ Because ¢ is similar

3=&xw0®(—&sw0), the corresponding dynamics appears
as the decay of a stripe and the growth of the other, as is
observed in the numerical simulations. Note the conjugate

function of 12(3) is $L=(Z69 (—(Z).
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To check the validity of the above considerations, we nu-
merically measured some related quantities. At first, we
simulated the equations in the %-length system and obtained
a steady one-stripe state. Then, we extended the system size
twice and copied the steady state to the region %SxSL.
Next, perturbations were added keeping the total mass con-
served and observed the resulting dynamics. |As(z)]
=, W), | = 7| [5(u+v)dx— [, (u+v)dx] is plotted in Fig.
2(a) which shows the exponent1al growth of the perturbation.
Then, we compared wg with the growing part of (u,v). In
Fig. 2(b), Aw(x)=(Au(x),Av(x)) is shown, where Aw(x)
=w(x,t,)—w(x,t,) is the difference of w between two grow-
ing time points #; and t,. Aw(x) is similar to ;bg which vali-
dates the above considerations.

The expected lZ is a continuous and smooth function on
0=x=L and odd around x= % Thus, it is enough to consider
a nontrivial solution of Eq. (8) on OSxS§ with boundary
condition zZ(O)z lZ(%)=0. We can limit our arguments
on Osté in the following discussion. We properly rede-
fine £ under this limitation. To obtain 1,71 and \ in Eq. (8),
Y=o+ 7 is defined, where 7 is orthogonal to g,
(¢, 7)1,=0). In the first order of approximation, 7 satisfies
the relation £7=\d,w,. Then we can obtain

N\ -1
+ié) , )

where K=Llﬁ S/2A(x)dx and Q=ﬁ 6/2 (x)dx. Here Q(x) is

defined as Q(x)EDMI,/IM(X)+DU1/IU()C)=)\Q()C), and is explic-
itly given by

O(x) = f dx' f i dx"[Jguo(x") + dvo(x")] - %x, (10)
0 0

and A(x) is the solution of the following equation:

@_(&_f_v

va
A=""0(x) + dyug (11)
dx* \D, Du) D,

with the boundary condition A(0) =A(§)=O.

We calculated Eq. (9) numerically. Observed growth rates
and estimated values from Eq. (9) are plotted in Fig. 3(a)
against one-half of the system size %, which is the distance
between two stripes. The two plots are in good agreement
with each other and support the validity of the arguments

presented.

A 40(0)
From Q(x)=\Q(x), we can obtain )\———— In UPS,

Q(x) is given by d,P & (-d,P) and independent of x, while in
PS Q(x) is connected with 0 at x=0 and =é by the modifi-

cation of boundary conditions. Thus, the sign of &(0) is the
same as d,P and the sign of N\ is the opposite of (9 P. This
leads to the condition of two stripe instability in the L-length
system as

3P <0. (12)

This instability condition is true for any stationary state as
seen below, and thus gives the criterion of the final state of
mass-conserved RDS.

The above arguments with the two-stripes situation are
extensible to an identical N-stripe pattern, where each stripe

has 1%, width. Consider a set of independent functions

\If" j (2”/N)"’z9w (k=1,2,...,N), where EB;V:l is de-
fined s1m11ar1y to ® and w, is redeﬁned by the one-stripe
solution of ﬁ width. Then eigenfunctions of £ (redefined for

the N-stripe solution), ¥, are close to W;. Smooth connec-
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tion of WX at each boundary x=1£\, J is conditioned. Consider-
ation of Q(x)=D,¥;+D,¥;, which is close to
@' 2™Vxig P, gives a rough estimation of the eigenvalues
as N~ —4(%’) d,P sinz(%). This indicates that a shorter wave
(ie., closer « to 3) has larger instability if 4,2 <0. A¥'? for
even N is identical to that estimated from two stripes. Ap-
proximated values are shown in Fig. 3. The approximated \'
for N=2 is plotted in (a). Eigenvalues and corresponding
eigenfunctions for N=8,L=80.0 are shown in (b) and (c).

To consider transient processes, an illustrative example
can be seen from the stationary state of 2N stripes with a
small perturbation. If Eq. (12) is satisfied for w,, the most
unstable function is W». By the growth of the perturbation
along this function, the system reaches N-stripe pattern at
last. If this new state becomes unstable, a similar process
follows until the system reaches a steady state. In the (un-
stable) stationary state where the dynamics become close in
their transient, A is small if the distance between adjacent
stripes is large. The corresponding state lasts for the duration
of approximately ™! and therefore each state appears qua-
sistationary. Because the distance becomes 2 times as large
after each transient, the staying time in the quasistationary
state also gets longer. We could numerically observe these
processes from the eight-stripe initial condition. This demon-
strates the underlying processes of the characteristic tran-
sients inherent to mass-conserved systems.

After the long transient, the system reaches the steady
state at which the condition Eq. (12) is violated. Notice that
Eq. (5), the condition for instability of uniform state, implies
Eq. (12) is always satisfied in the early stages of transient,
where w(x) ranges in the neighborhood of w". Therefore, the
characteristic wavelength of the steady state is always longer
than that expected by linear stability analysis at a uniform
state in a mass-conserved system. Our numerical model
showed a one-stripe solution eventually between 2.0=L
=100.0, while €,,=3.2.

One interesting question that arises is the possibility of
the system in which the condition in Eq. (12) is always valid
in the transient quasisteady states except in sole stripe solu-
tions. Such systems fall into a one-stripe solution after a long
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transient regardless of system size. An example of such sys-
tem was supplied by our group in Ref. [13], defined by
Sfu,v)=—a(u+v)[(u+v)(u+v)-B] where 6=D,/D,. In
this specific model, if L is large enough, P is well approxi-
mated by P:3IL);’8; with yz%\/DDL;“aﬂ. Thus a one-stripe
pattern is the only stable state in the s“ystem. Though rigorous
conditions are not described here, many mass-conserved sys-
tems have such properties.

In this letter, we study RDS in which the uniform state is
destabilized via a Turing-like mechanism and mass (#+v) is
conserved. The stability of states in such systems is derived
from the condition Eq. (12). The analysis presented is useful
for stationary patterns in any RDS and the conserved quan-
tity does not have to be strictly defined by mass. Because the
existence of any conserved quantity brings the corresponding
0-eigenfunction, our arguments are applicable. Thus, the dy-
namics studied here may be observed in a wider class of
RDS with conserved quantities [12,14].

We did not mention the hierarchical structure of quasista-
tionary states in the phase space, which is a necessary con-
dition for the sequential transient, as discussed in Ref. [5]. It
is a global property of the phase space of the systems and
difficult to study. Numerical simulations suggest it is satis-
fied in mass-conserved systems.

Applications of this work are possible to many phenom-
ena, particularly to biological systems. Proposed biological
models often contain conserved quantities [12,15,16]. At the
cellular level (~10 wm), cytosolic proteins diffuse at
~10 um?/s [17] leading to the rough estimation of the time
scale of dynamics as \™' ~ (4,P/L*)~' ~L?/D,~ 10 s. Typi-
cally, it is faster than the synthesis or degradation of mol-
ecules and the dynamics is expected to occur within the time
scale in which mass-conserved modeling is valid. The for-
mation of cell polarity based on the above discussions is a
potential application [12,13,18].
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